
10.(D)

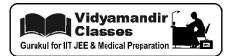
MISCELLANEOUS EXERCISE

Chemical Bonding - I

- **1.(D)** $I^+ < I < I^-$ cation is always smaller and anion is always greater than the corresponding neutral atom.
- **2.(B)** Refer to theory (Dobereiner's triads)
- **3.(D)** Octet of each of the species Cl, Br, I and O is complete and duplet of H is complete in the given options. Thus, none of them would like to take up another electron.
- **4.(C)** Covalent character increases as size of anion increases.
- **5.(D)** Size of Te²⁻ anion will be greatest, hence is more prone to be distorted by a cation.
- **6.(CD)** Oxygen and phosphorous both are non metals.
- **7.(ACD)** All are facts (refer to theory)
- **8.(D)** BF₃ and NF₃ have different structures as there is no lone pair present in BF₃, which is there is NF₃.

9.(A) (fact) Octahedral arrangement is the most stable configuration if 6 electron pairs are to be arranged.

11.(B) $C = \frac{\pi \text{ bond}}{\pi \text{ bond}} C = \frac{\pi \text{ bond}}{\pi \text{ bond$

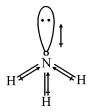

12.(C)
$$H = C - H$$
 9 σ , 1π and 2 lone pair 13.(BCD) $H = C - C = C - H$ 13.(BCD) $H = C - C = C - H$ 13.(BCD) $H = C - C = C - H$ 13.(BCD)

14.(D) Polarising power of a cation increases as charge increases and size decreases.

15.(ABC) "D" is not correct as polar nature of halogen acid is due to the electronegativity difference b/w the bonding atoms.

16.(D) 17.(C) Ionic character will be maximum (and covalent character is minimum) if cation is large and anion is small.

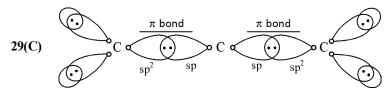
[JEE-2022/Module - 1] Chemistry


18.(C) Cl – Cl bond will be non polar;

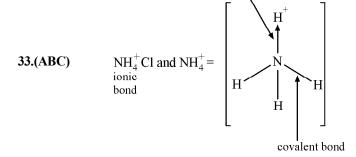
now
$$\leftarrow \frac{C - F > N - F > O - F}{\text{polarity}}$$
 as $\frac{C < N < O < F}{\text{electronegativity}}$

20.(C) Triple bond is the shortest.

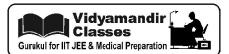
21.(B) As
$$\leftarrow \frac{F > O > N > S}{\text{electronegativity}}$$


- **23.(D)** $(9\sigma \text{ and } 9\pi)$
- 24.(D) NH₃ has highest diplole moment as its electronegativity is highest

25.(D) $(H - F \cdots H - F \cdots H - F)$


 NH_3 and H_2O will form a 3- dimentional polymeric structure and H – bonds in H – Cl are not very strong (as in H – F), so formation of polymeric structure is difficult.

- **26.(D)** F \rightleftharpoons Be \rightleftharpoons F, Dipole moment cancel each other in BeF₂ because of its linear shape and thus it is non-polar, which is not in the case of H₂O.
- 27.(C) Single bond energies tend to increase as we proceed to right in a given period but still C C bond is the greatest because electron-electron repulsion is very high in N N, O O and F F due to small size of atoms weakening the respective bonds.
- **28.(B)** All carbons are sp³ hybridised.



30.(D) HF > H₂O > H₂S
$$\therefore \leftarrow \frac{F > O > S}{electronegativity}$$

- **31.(BD)** $\mu_{CH_4} = \mu_{CCl_4} = 0$, as both CH_4 and CCl_4 are perfectly tetrahedral molecules.
- **32.(B)** Bond length $_{H-Cl} = 1/2$ (Bond length $_{H-H}$) + 1/2 (Bond length $_{Cl-Cl}$) = 1/2 (74) + 1/2 (198) = 136 pm coordinate bond

IN CHAPTER EXERCISES

34.(ABD) HF is more polar than HBr as electronegativity of F is more than that of Br.

CuCl is more covalent than NaCl, as 18-electron shell of Cu⁺([Ar] 3d¹⁰) is more electronegative because inner electrons have poor shielding effect on nucleus incressing the polarising power of nucleus.

35.(A) For 100% ionic character (for 1 Å bond length)

1 electon (Charge = 1.6×10^{-19} C = 4.8×10^{-10} esu), should be separated by 1 Å

 \Rightarrow Dipole moment = 4×10^{-10} esu $\times 10^{-8}$ cm = 4.8×10^{-18} esu cm = 4.8 D

Now observed dipole moment = 1.2D = 1/4 (4.8 D)

- \Rightarrow fraction of electric charge = 1/4 = 0.25
- **36.(A)** Fact (refer to theory)
- 37.(C) Carbon in diamond is arranged in a tetrahedral structure \Rightarrow sp³ hybridised carbon.

In graphite it is arranged in trigonal planar geometry \Rightarrow sp² hybridised carbon.

In acetylene (CH \equiv CH) the geometry is linear \Rightarrow sp hybridised carbon

- **38.(B)** BF₃ is a trigonal planar molecule.
- **39.(D)** Polarising power of Mg²⁺ and Li⁺ will be higher than that of Na⁺ due do higher charge and smaller size respectively. Now polarisability of F will be less than that of Cl due to smaller size.
 - ⇒ NaF should be the most ionic
- 40.(AD) As we go down the group stability of lower oxidation states increases due to increasing inert pair effect.

 $\Rightarrow \frac{Ge^{2+} < Sn^{2+} < Pb^{2+}}{\text{increasing stability}}, \text{ also } Pb^{+2} \text{ is more stable than } Pb^{+4} \text{ as inert pair effect is strong but } Sn^{2+} \text{ is more stable}$

than Sn⁴⁺ as inert pair effect is relatively weaker.

Bond pair

42.(A) $\leftarrow \frac{I^- > Br^- > CI^- > F^-}{\text{increasing polarizability}}$:: larger the size of anion, higher will be its polarisability.